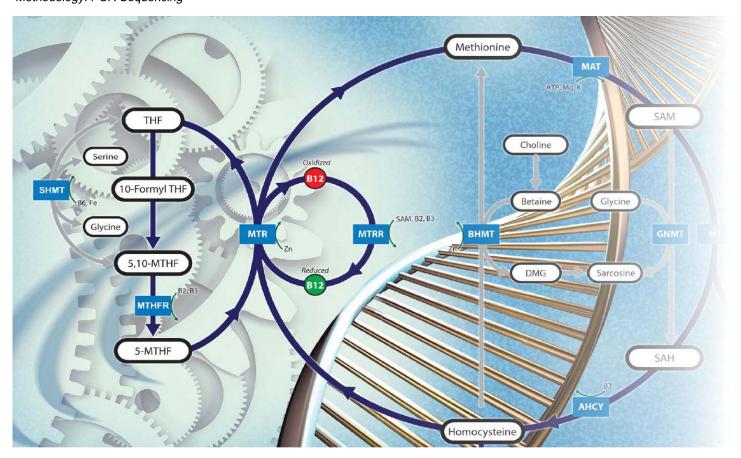
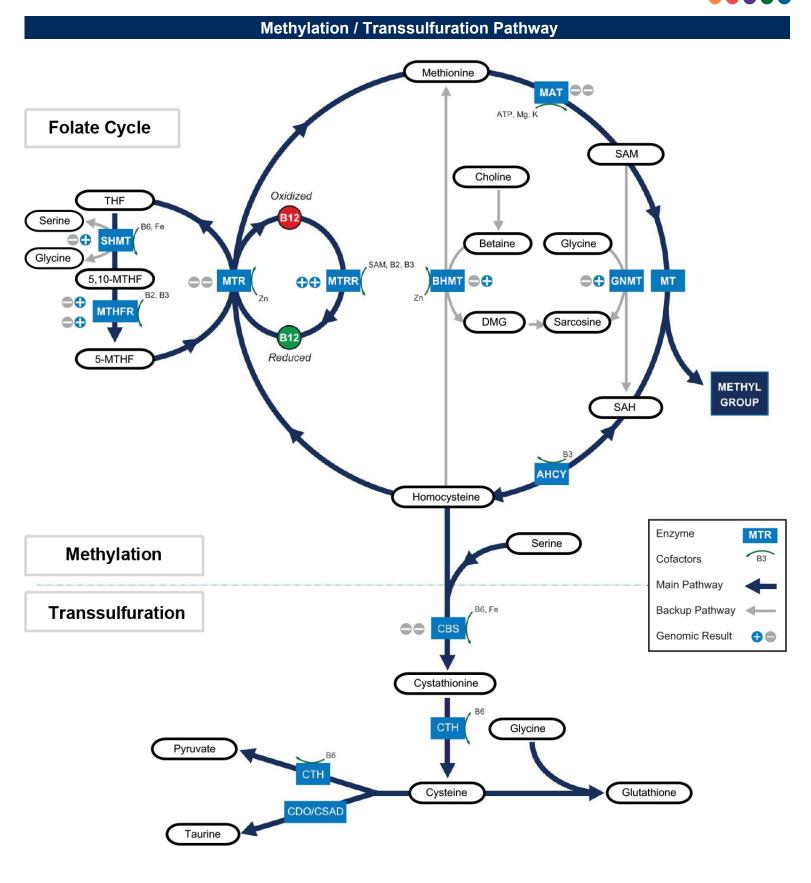


63 Zillicoa Street Asheville, NC 28801 © Genova Diagnostics

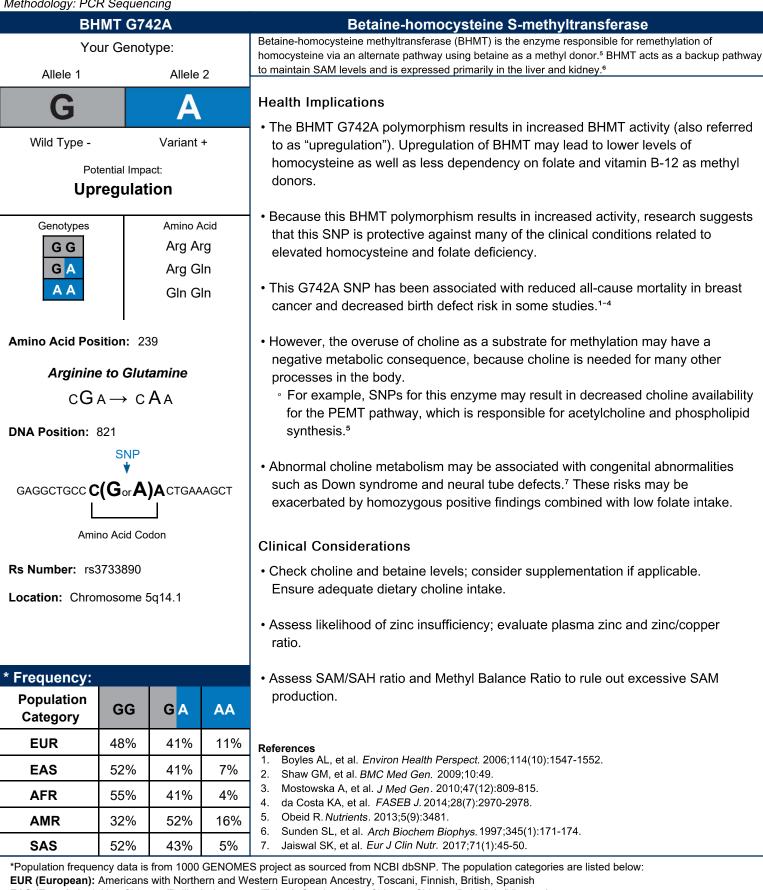
Patient: SAMPLE


PATIENT


DOB:

Sex:

MRN:


3542 Methylation Genomics - Buccal Swab *Methodology: PCR Sequencing*

Energy Production

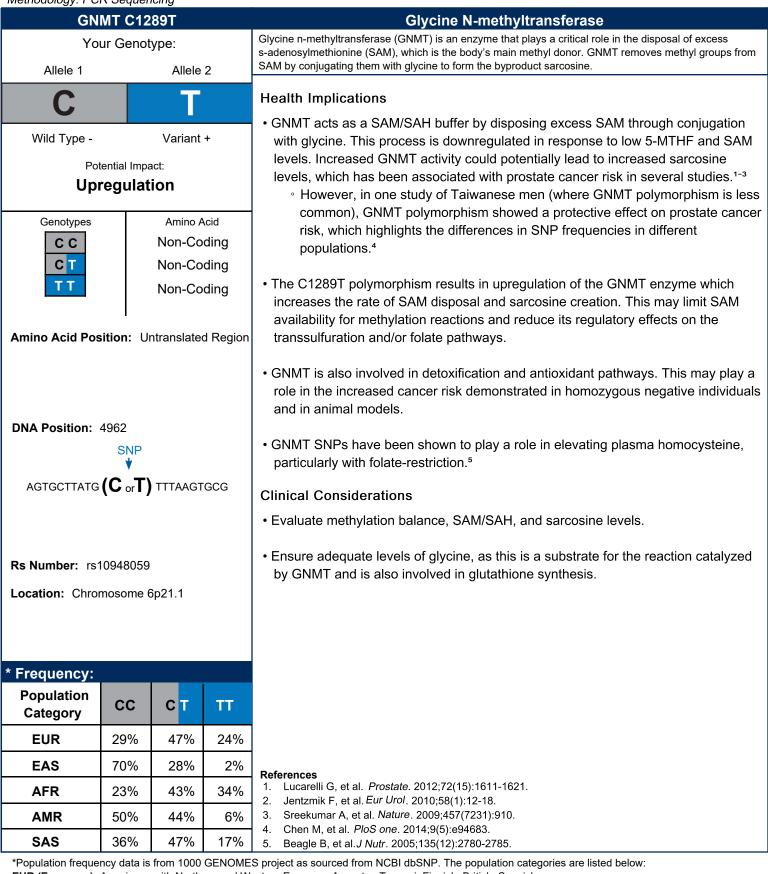
Detoxification

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK


C	BS C69	91		Cystathionine beta-synthase		
Tour Genotype.			2	Cystathionine beta-synthase (CBS) is the enzyme responsible for homocysteine's irreversible conversion to cystathionine. This is the first step in the transsulfuration pathway that ultimately leads to glutathione production.		
0		0		Health Implications		
		し		• The CBS enzyme is strongly regulated by the availability of SAM. Adequate SAM		
Wild Type -		Wild Typ	pe -	levels leads to an upregulation of the CBS enzyme, allowing homocysteine to be irreversibly committed to the transsulfuration pathway. ¹		
	tential Impa					
No U	pregula	ation		 Most literature suggests that CBS C699T polymorphisms result in upregulation of CBS activity favoring transsulfuration and lowering homocysteine.^{2,3} 		
Genotypes		Amino A				
СС		Tyr Ty	/r	• One study demonstrated the opposite effect in a Chinese population where CBS		
СТ		Tyr Ty	/r	polymorphisms resulted in increased plasma homocysteine. ⁴ Therefore, debate exists regarding the impact of C699T polymorphism on enzyme activity.		
ТТ		Tyr Ty	/r			
				Despite the lack of agreement on enzyme activity, multiple studies demonstrate		
Amino Acid Pos	sition: 23	33		clinical associations with the C699T polymorphism. These include:		
				 Reduced risk of lymphoma ⁵ 		
Tyrosir	ne to Tyr	osine		 Reduced risk of venous disease ⁶,⁷ 		
таС	→TAT			 Protective effects against deep vein thrombosis ⁶ Decreased rick of economy entery diagona ⁸ 		
				 Decreased risk of coronary artery disease ⁸ 		
DNA Position:	944			Clinical Considerations		
	SNP			 Since this polymorphism is mostly considered to be protective, evaluate 		
				homocysteine levels in patients with "wild-type" (negative) CBS genotypes and		
TGGCTCAC		GACACCA	ACCG	address causes of elevated homocysteine.		
L		J				
Ami	no Acid Co	don		Some clinicians consider CBS polymorphisms to potentially "drain" methylation metabolites into the transculfusction scale. Evaluate scale methyl belongs retires		
Do Numbori ro	224706			metabolites into the transsulfuration cycle. Evaluate overall methyl balance ratios and consider methylation support if warranted.		
Rs Number: rs2	234700					
Location: Chro	mosome 2	21q22.3		 Reduce levels of oxidative stress which further upregulate the CBS enzyme. 		
				• Evaluate other transsulfuration metabolites (taurine, cystathionine, and glutathione		
				to determine if upregulation of CBS is likely. Assess met/sulf balance ratio.		
Frequency:				- Ensure adaptives supply of vitamin D.C. and iron, as these are selectors for the		
Population	сс	СТ	тт	 Ensure adequate supply of vitamin B-6 and iron, as these are cofactors for the CBS enzyme. 		
Category						
EUR	42%	48%	10%	References 1. Stabler SP, et al. <i>Blood</i> . 1993;81(12):3404-3413.		
EAS	95%	5%	<1%	2. DeStefano Vea. Ann Hum Genet. 1998;62(6):481-490.		
AFR	59%	33%	8%	 Aras Ö, et al. <i>Clin Genet</i>. 2000;58(6):455-459. Wu X, et al. <i>Hered Cancer Clin Pract</i>. 2014;12(1):2. 		
				5. Li Q, et al. Cancer Causes Control : CCC. 2013;24(10):1875-1884.		
AMR	72%	25%	3%	 Ayala C, et al. <i>Biomedica</i>. 2010;30(2):259-267. Hendrix P, et al. <i>J Neurosurg</i>. 2017:1-7. 		
SAS	44%	46%	10%	8. Kruger WD, et al. Mol Genet Metab. 2000;70(1):53-60.		

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam) AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

ARR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

MAT	1A D18	777A		Methionine adenosyltransferase		
Yo Allele 1	ur Genot	type: Allele	2	Methionine adenosyltransferase (MAT) is the enzyme that catalyzes the conversion of methionine into the body's main methyl donor, s-adenosylmethionine (SAM). This enzyme requires magnesium as a cofactor and is downregulated by oxidative stress, such as alcohol and free radical damage.		
G		G		Health Implications		
Wild Type -	Wild Type -		rpe -	 Methionine adenosyltransferase (MAT) activity is critical to methylation. There are a few MAT1A genetic polymorphisms studied that lead to MAT1A deficiency (als 		
Po	tential Impa	act:		known as Mudd's Disease), but this condition is extremely rare.		
No Do	wnreg	ulation		The D18777A SNP is fairly common in the human population and has association		
Genotypes		Amino A	Acid	with cardiovascular disease risk. ¹		
GG		Non-Co	ding	Although literature is scant on this mutation, some studies have demonstrated		
GA		Non-Co	ding	higher homocysteine levels with this polymorphism. ² Another study also		
AA		Non-Co	Ū	demonstrated that this correlation was modulated by overall dietary fat intake. ³		
		NUII-CU	ung			
Amino Acid Position: Untranslated Region				 Another study demonstrated that the D18777A SNP was associated with higher rates of stroke independent of homocysteine levels, which was hypothesized to b due to methylation activity impairment.¹ 		
				Clinical Considerations		
DNA Position:	23777			 Evaluate methylation balance, SAM/SAH, and sarcosine levels. 		
GCTTTTCTCT	SNP ∳ (G₀rA)	таатдта	TCA	 Reduce levels of oxidative stress, such as free radical exposure and alcohol intal as these can further impair the MAT1A enzyme. 		
				 Ensure adequate levels of MAT1A cofactors such as magnesium and potassium. Consider testing RBC magnesium and potassium. 		
Rs Number: rs3851059 Location: Chromosome 10q22.3				 Patients with this polymorphism may have higher homocysteine in response to dietary fat intake than those without.³ Monitor advanced cardiovascular risk markers if clinically appropriate. 		
Frequency: Population Category	GG	G A	ΑΑ			
EUR	50%	43%	7%			
EAS	36%	48%	16%			
AFR	62%	34%	4%			
AMR	52%	40%	8%	References 1. Lai CQ, et al. Am J Clin Nutr. 2010;91(5):1377-1386.		
SAS	42%	45%	13%	 Beagle B, et al. J Nutr. 2005;135(12):2780-2785. Huang T, et al. Nutr Metab Cardiovasc Dis. 2012;22(4):362-368. 		

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

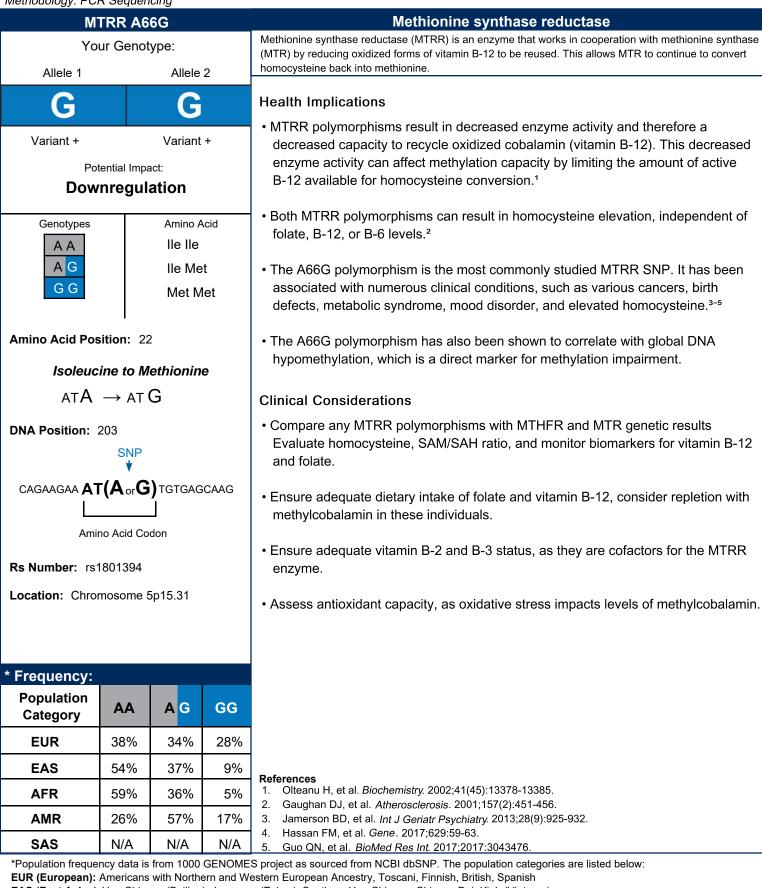
AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

3542 Methylation Genomics - Buccal Swab

Methodology: PC						
M	TR A275	56G		Methionine synthase		
	Your Genotype: Allele 1 Allele 2			Methionine synthase (MS/MTR) is responsible for converting homocysteine back into methionine by using 5-MTHF as a methyl donor. This reaction requires zinc and active B-12 (methylcobalamin) as cofactors and is the main pathway responsible for homocysteine recycling in every cell.		
Allele 1		Allele	2			
Α		Α		Health Implications		
Wild Type -		Wild Ty	/pe -	 The A2756G polymorphism is the most common MTR SNP discussed in the literature. 		
Po	tential Impa	act:				
No U	Jpregu	lation		 It is generally accepted that this SNP upregulates the MTR enzyme leading to lower homocysteine levels.¹ 		
Genotypes		Amino A	Acid			
AA		Asp A	sp	• The impact of this SNP on global DNA methylation is debated in the literature,		
AG		Asp G	Bly	however clinical associations with the A2756G polymorphism include congenital birth defects such as spina bifida, cleft lip/palate, and cardiac defects. ²⁻⁴		
GG		Gly G	ly			
				• One hypothesis is that as the MTR enzyme is at the junction between the folate		
Amino Acid Pos	sition: 9	19		pathway and the methylation pathway, upregulation of MTR may shunt folate groups to the methylation cycle at the expense of other folate needs, such as		
				purine/nucleotide synthesis.		
Asparta	ate to Gl	lycine				
GAC	$c \rightarrow G$	Gc		 Several epidemiological studies on MTR polymorphism have demonstrated risk associations with various cancers, evidence remains controversial.⁵⁻⁷ Many of 		
DNA Position:	3179			these risk associations appear to be population/ethnicity specific, which could be due to gene-gene interactions with MTRR and MTHFR.		
	SNP					
	*					
ATTAGACAG G	G(AorG) C CATTA	TGAG	Clinical Considerations		
L				 Compare any MTR polymorphisms with MTHFR and MTRR genetic results. 		
Ami	no Acid Co	odon		- Evaluate homeovetaine SAM/SAH ratio and monitor hismorkers for vitamin P 12		
				 Evaluate homocysteine, SAM/SAH ratio, and monitor biomarkers for vitamin B-12 and folate. 		
Rs Number: rs	1805087					
Location: Chro	mosome	1q43		 Ensure adequate dietary intake of folate and vitamin B-12. 		
* Frequency:						
Population Category	AA	A G	GG			
EUR	69%	30%	1%	References		
EAS	72%	25%	3%	 Ho V, et al. Genes Nutr. 2013;8(6):571-580. Wang W, et al. Genet Test Mol Biomarkers. 2016;20(6):297-303. 		
AFR	47%	42%	11%	3. Klerk M, et al. Thromb Res. 2003;110(2-3):87-91.		
AMR	65%	33%	2%	 Doolin MT, et al. Am J Hum Genet. 2002;71(5):1222-1226. Bleich S, et al. Epigenomics. 2014;6(6):585-591. Humani i M. Bal Laf Bathal. 2010;2010;401:405. 		
SAS	42%	47%	11%	 Hosseini M. <i>Pol J of Pathol.</i> 2013;64(3):191-195. Jiang-hua Q, et al. <i>Tumour Biol.</i> 2014;35(12):11895-11901. 		
		1				

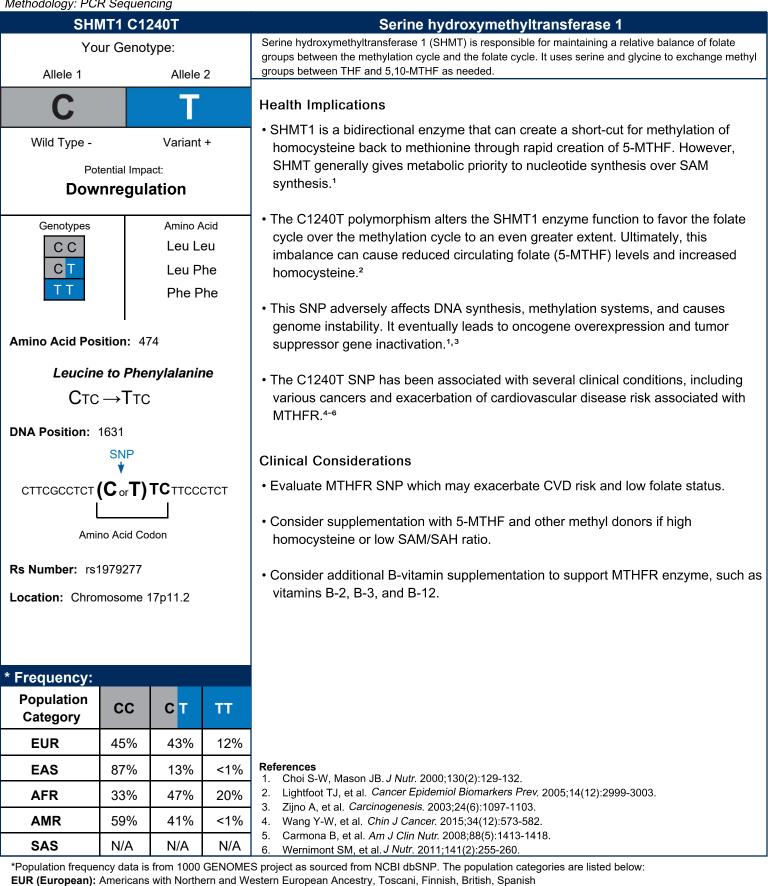
*Population frequency data is from 1000 GENOMES project as sourced from NCBI dbSNP. The population categories are listed below:


EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian


SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

MT	HFR C6	77T		5,10-methylenetetrahydrofolate reductase Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme which converts 5,10- methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). This step activates folate to be used for homocysteine (Hcy) conversion to methionine, instead of nucleotide synthesis.		
	ur Genot		0			
Allele 1	_	Allele	2	Health Implications		
С		Ţ		 The C677T polymorphism downregulates enzymatic activity, which can limit methylation reactions in the body. The C677T polymorphism results in an 		
Wild Type -		Variant	+	increased risk of high homocysteine and an increased tendency for lower folate levels. ^{1,2}		
	tential Impa					
Dow	nregula	ation		 Homozygosity for 677 (+/+) results in 60-70% reduction in MTHFR enzyme activity Heterozygosity for 677 (-/+) results in 30-40% reduction in MTHFR enzyme activit 		
Genotypes		Amino A	cid			
CC		Ala Al	а	Lower levels of B-vitamin and folate increase the risk of elevated homocysteine		
СТ		Ala Va	al	related to MTHFR SNPs. ²		
ТТ		Val Val				
		varve	41	 Homozygous C677T subjects have higher Hcy levels, while heterozygous subjects have mildly raised Hcy levels compared to controls.⁴ 		
Amino Acid Pos	sition: 22	22				
Alanin	ne to Val	ine		 MTHFR C677T SNPs have been associated with many disease processes including: 		
GСс	$\rightarrow GT$	С		 Cardiovascular disease ⁵⁻⁷ 		
		-		 Depression and schizophrenia ^{8,9} Increased risk of birth defects and Down's syndrome ¹⁰ 		
DNA Position:	894					
	SNP			Psoriasis Dishetes		
-		-		 Diabetes Parkinson's disease 		
TCTGCGGGA G	G(C or I)	CGATTT	CATC	 Various cancers ⁴ 		
L				Clinical Considerations		
Amiı	no Acid Co	don		 Ensure adequate intake of dark-green leafy vegetables and other B vitamin-rich foods. 		
Rs Number: rs1	1801133					
Location: Chror	mosome 1	In36 22		 Evaluate homocysteine, SAM, and SAH levels. 		
	mosome	100.22		• · · · · · · · · · · · · · · · · · · ·		
				 Supplementation with methylated folate and folate-rich foods may help lower Hcy and mitigate risk.¹¹ 		
Frequency:				 Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors). 		
Population Category	сс	СТ	тт	References 1. Yang Q, et al. Am J Clin Nutr. 2012;95(5):1245-1253. 2. Carria Minguillan C L et al. Canage Nutr. 2014;9(6):435		
	470/	1 4 0/	00/	 Garcia-Minguillan CJ, et al. <i>Genes Nutr.</i> 2014;9(6):435. Weisberg IS, et al. <i>Atherosclerosis</i>. 2001;156(2):409-415. 		
EUR	47%	44%	9%	 Liew S-C, et al. Eur J Med Genet. 2015;58(1):1-10. Zhang P, et al. Angiology. 2015;66(5):422-432. 		
EAS	37%	47%	16%	 S. Zhang F, et al. Anglology. 2013;00(3):422-432. Yang KM, et al. Biomed Rep. 2014;2(5):699-708. 		
AFR	81%	19%	<1%	7. Cui T. Int J Neurosci, 2015. 8. Wu YL, et al. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:78-85.		
AMR	32%	52%	16%	9. Hu CY, et al. J Neural Transm (Vienna). 2015;122(2):307-320.		
SAS	68%	30%	2%	10. Yadav U, et al. <i>Metab Brain Dis</i> . 2015;30(1):7-24.		

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

MTH	IFR A12	298C		5,10-methylenetetrahydrofolate reductase		
	Your Genotype: Allele 1 Allele 2			Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme which converts 5,10- methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-MTHF). This step activates folate to be used f homocysteine conversion to methionine, instead of nucleotide synthesis.		
			2	Health Implications		
Α		C				
Wild Type -	Wild Type - Variant +		+	 The A1298C homozygous SNP mutation downregulates enzyme activity but may not independently affect folate or homocysteine levels.¹ However, a combined heterozygosity for both 677T and 1298C mutations does result in significant 		
Pot	ential Impa	act:		plasma homocysteine elevation. ^{1,2}		
No Do	wnregi	ulation				
.	<u> </u>			 Heterozygosity for only 1298 (-/+) has not been shown to affect overall MTHFR 		
Genotypes		Amino A		enzyme activity, however, homozygosity for 1298 (+/+) results in 30-40% reduct		
AA		Glu G	lu	in MTHFR enzyme activity. ³		
AC		Glu Al	а	• MTHER A 1208C SNDs have been appealeted with many disease processes		
CC		Ala Al	а	 MTHFR A1298C SNPs have been associated with many disease processes including: 		
				 Cardiovascular disease ⁴⁻⁶ 		
Amino Acid Pos	ition: 40	20		 Male infertility ⁷,⁸ 		
	auon. 42	-9		 Increased risk of birth defects ⁹ 		
Glutar	nate to A	Alanine		 Certain cancer types¹⁰⁻¹² 		
	$\rightarrow GC$	Δ				
GAA	/ 90	~		Clinical Considerations		
NA Position:	1515			• Ensure adequate intake of dark-green leafy vegetables and other B vitamin-rich		
	SNP			foods.		
	*					
ACCAGTGAA G	(AorC)	AGTGT	СТТТ	 Evaluate homocysteine, SAM, and SAH levels. 		
L						
Amiı	no Acid Co	don		 Supplementation with methylated folate and folate-rich foods may help lower Hcy and mitigate risk.¹³ 		
				and mugate lisk.		
Rs Number: rs1	801131			• Evaluate the status of vitamin B-2 and B-3 (MTHFR enzyme cofactors).		
_ocation: Chroi	nosome 1	1p36.22				
		•				
				References		
Frequency:				1. Isotalo PA, et al. Am J Hum Genet. 2000;67(4):986-990.		
Population			00	 van der Put NM, et al. Am J Hum Genet. 1998;62(5):1044-1051. Weisberg IS, et al. Atherosclerosis. 2001;156(2):409-415. 		
Category	AA	AC	CC	 Weisberg IS, et al. <i>Atheroscierosis</i>. 2001;156(2):409-415. Kang S, et al. <i>J Clin Neurosci</i>. 2014;21(2):198-202. 		
EUR	43%	45%	12%	5. Lv Q, et al. <i>Genet Mol Res.</i> 2013;12(4):6882-6894.		
				 Zhang MJ, et al. Cerebrovasc Dis. 2014;38(6):425-432. Eloualid A, et al. PloS one. 2012;7(3):e34111. 		
EAS	63%	33%	4%	8. Shen O, et al. Ann Hum Genet. 2012;76(1):25-32.		
AFR	78%	21%	1%	9. Xuan C, et al. <i>Sci Rep.</i> 2014;4:7311.		
AMR	62%	34%	4%	10. Qi X, et al. <i>Tumour Biol.</i> 2014;35(3):1757-1762. 11. Qi YH, et al. <i>Clin Res Hepatol Gastroenterol.</i> 2014;38(2):172-180.		
				12. Qin X, et al. <i>PloS one</i> . 2013;8(2):e56070.		
SAS	39%	44%	17%	13. Zhao M, et al. <i>Stroke.</i> 2017;48(5):1183-1190.		

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

Methodology: PC	MT V15	-		Catechol-O-methyltransferase		
Your Genotype: Allele 1 Allele 2			2	Catechol-O-Methyltransferase (COMT) is a key enzyme involved in the deactivation of catechol compounds including catecholamines, catechol estrogens, catechol drugs such as L-DOPA, and various chemicals and toxins such as aryl hydrocarbons.		
			2	Health Implications		
G		A		COMT polymorphisms result in decreased enzyme activity. Individuals with COMT		
Wild Type -		Variant	+	SNPs may have an increased risk of inefficient methylation of catecholamines, estrogens, and toxins. ^{1,2}		
Pot	tential Impa	act:		\cdot The most common construct of COMT in most non-defined in hotorograms $(1/)$		
Dow	nregul	ation		The most common genotype of COMT in most populations is heterozygous (+/-). Individuals with a homozygous positive (+/+) genotype for COMT have a 3-4-fold reduction in COMT activity.		
Genotypes		Amino A	Acid	reduction in COMT activity.		
GG		Val Va	al	COMT polymorphisms have been implicated in mood disturbances such as		
GA		Val M	et	anxiety, panic disorder, eating disorder, aggressiveness, anger, alcoholism, and		
AA		Met N	let	severity of bipolar disorder.³-⁵		
	 sition: 15 e <i>to Meth</i> G →A⊤(nionine		• COMT polymorphism has been implicated in risk of breast cancer, particularly in women with prolonged estrogen exposure; ^{6,7} or in women with low folate and high homocysteine. ⁸ Also, COMT SNPs have been shown to correlate with higher estrogen levels with estrogen replacement therapy. ⁹		
Und Und		5		• Fibromyalgia and migraine have been associated with COMT polymorphisms		
DNA Position:	721			as well. ^{10,11}		
	SNP			Clinical Considerations		
TTTCGCTGGC		TCAAGG		• Evaluate methylation pathway to locate any potential backup.		
			AUAA	• Ensure adequate B6, B12, folate, magnesium, betaine, and methionine to ensure adequate SAM production.		
Ami	no Acid Co	don		• SAM-e supplementation may be considered, as it is the cofactor for COMT,		
Rs Number: rs4	1680			however, this therapy is contraindicated in bipolar disorder.Minimize stress, since catecholamine levels may already be high.		
				Make sure to appropriately monitor estrogen levels and estrogen metabolites,		
Location: Chro	mosome	38.p12		especially if your patient is on estrogen replacement therapy.		
				 Consider additional antioxidant support, especially if low levels of glutathione are reported. 		
* Frequency:						
Population Category	GG	GA	AA	 References 1. Lachman et al. <i>Pharmacogenetics</i>. 1996;6(3):243-250. 2. Mannisto et al. <i>Pharmacol Rev</i>. 1999;51(4):593-628. 		
EUR	22%	53%	25%	 Woo JM, et al. Am J Psychol. 2002;159(10):1785-1787. Rujescu D, et al. Biol Psychiatry. 2003;54(1):34-39. 		
EAS	43%	47%	10%	5. Papolos DF, et al. <i>Mol Psychiatry</i> . 1998;3(4):346-349.		
AFR	46%	45%	9%	 Huang CS, et al. <i>Cancer Res.</i> 1999;59(19):4870-4875. Lavigne JA, et al. <i>Cancer Res.</i> 1997;57(24):5493-5497. 		
AMR	54%	37%	8%	 B. Goodman JE, et al. Carcinogenesis. 2001;22(10):1661-1665. 9. Worda C, et al. Hum Reprod. 2003;18(2):262-266. 		
SAS	37%	41%	22%	10. Gursoy S, et al. RheumatolInt. 2003;23(3):104-107.		
				11. Emin Erdal M, et al. <i>Brain Res Mol Brain Res</i> . 2001;94(1-2):193-196. S project as sourced from NCBI dbSNP. The population categories are listed below:		

EUR (European): Americans with Northern and Western European Ancestry, Toscani, Finnish, British, Spanish

EAS (East Asian): Han Chinese (Beijing), Japanese (Tokyo), Southern Han Chinese, Chinese Dai, Kinh (Vietnam)

AFR (African): Nigerian, Kenyan, Gambian, Mendi (Sierra Leone), African American, African Caribbean **AMR (Ad Mixed American):** Mexican, Puerto Rican, Colombian, Peruvian

AMR (Ad Mixed American): Mexican, Puerto Rican, Colombian, Peruvian

SAS (South Asian): Americans of Gujarati descent (India), Punjabi (Pakistan), Bengali (Bangladesh), Sri Lankan/Indian in UK

Commentary

This test has been developed and its performance characteristics determined by Genova Diagnostics, Inc. It has not been cleared by the U.S. Food and Drug Administration.

Commentary is provided to the practitioner for educational purposes, and should not be interpreted as diagnostic or treatment recommendations. Diagnosis and treatment decisions are the responsibility of the practitioner.

The accuracy of genetic testing is not 100%. Results of genetic tests should be taken in the context of clinical representation and familial risk. The prevalence and significance of some allelic variations may be population specific.

Any positive findings in your patient's test indicate genetic predisposition that could affect physiologic function and risk of disease. We do not measure every possible genetic variation. Your patient may have additional risk that is not measured by this test. Negative findings do not imply that your patient is risk-free.

DNA sequencing is used to detect polymorphisms in the patient's DNA sample. The sensitivity and specificity of this assay is <100%.