The Steroidogenic Pathway: Understanding What Influences Each Step

Ellen Antoine, DO, FACEP, ABIHM, IFMCP

June 22, 2016
Christine Stubbe, ND
Medical Education Specialist - Asheville
Ellen Antoine, DO, FACEP, ABIHM, IFMCP
Technical Issues & Clinical Questions

Please type any technical issue or clinical question into either the “Chat” or “Questions” boxes, making sure to send them to “Organizer” at any time during the webinar.

We will be compiling your clinical questions and answering as many as we can the final 15 minutes of the webinar.

DISCLAIMER: Please note that any and all emails provided may be used for follow up correspondence and/or for further communication.
Need More Resources?

Ensure you have an account!
The Steroidogenic Pathway: Understanding What Influences Each Step

Ellen Antoine, DO, FACEP, ABIHM, IFMCP

June 22, 2016
Objectives:

• Overview of the steroidogenic cascade
• Metabolic pathways (positive and negative influences)
• Case studies to apply hormone assessments in clinical practice
The suggestions in this webinar are just that, suggestions. They are for educational purposes only. They are based on my research as well as my anecdotal experience with patients. These are not necessarily recommended for all patients and caution should be used in those with abnormal liver or kidney function. Consider these a guideline and as such should not take the place of your clinical judgment nor be routine practice for all patients. Always practice personalized medicine and identify and address root causes of disease. Genova Diagnostics, and Ellen Antoine, DO, FACEP, ABIHM, IFMCP are not responsible for any adverse effects of consequences resulting from the use of any of these suggestions in this webinar.
A Few Basics

• No two patients are alike
 – Individualized evaluation leads to a more effective intervention
• Hormones do not function in isolation
 – Imbalances in one area will affect another
• The metabolic pathways taken by hormones will ultimately determine their effects

We need to understand this cascade in order to know how and when to intervene
Clinical Concerns

- Menopause
- Andropause
- Cognitive decline
- Fatigue
- Depression
- Heart disease
- Cancer
- Weight gain

- Osteoporosis
- Decreased libido/sexual dysfunction
- Insomnia
- Migraine headaches
- Mood swings/anxiety
- Hair loss/Hair in places it shouldn’t be
- Irregular periods
- Erectile dysfunction
Survival Account

Entertainment Money

Pregnenolone Steal
Cortisol Steal
Progesterone Steal
First and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1 gene)

- Steroidogenic enzymes fall into 2 groups
 - Cytochrome P450
 - Type 1 – in the mitochondria
 - Type 2 – in the endoplasmic reticulum
 - Hydroxysteroid dehydrogenase (HSDs)

- Steroidogenic enzymes are modulated by cofactors

\[
\text{cholesterol} + 3 \text{NADPH} + 3 \text{H}^+ + 3 \text{O}_2 \rightleftharpoons \text{pregnenolone} + 4\text{-methylpentanal} + 3 \text{NADP}^+ + 3 \text{H}_2\text{O}
\]
Cholesterol and Pregnenolone

• **Cholesterol**
 - Building block of all the steroid hormones
 - Need healthy fats and an adequate cholesterol level to make hormones
 - Very low cholesterol levels contribute to poor hormone production
 - Statins, Red Yeast Rice, Binders, and genetically low cholesterol
 - Associated with increased risk for cancer, suicide, memory concerns

• **Pregnenolone**
 - Manufactured primarily in adrenal glands
 - Nearly all other steroid hormones are made from this precursor
 - In times of chronic adrenal stress, levels drop
 - Aging leads to a decrease – a biomarker of aging
 - Enhances memory and reduces stress-induced fatigue
 - Found in mice to be 100 x more effective for memory enhancement than other steroids
 - Other benefits include increased resistance to stress, reduced PMS, improved immunity, and repair of myelin sheaths
3β-HYDROXYSTEROID DEHYDROGENASE
3β-Hydroxysteroid Dehydrogenase (3β-HSD)

- Conversion of Pregnenolone to Progesterone
- Conversion of 17-OH Pregnenolone to 17-OH Progesterone
- Conversion of DHEA to Androstenedione
 - (also conversion of Androstenediol to Testosterone & 5α-DHT to 5α-Androstanediol)
- Only enzyme in adrenal pathway of corticosteroid synthesis that is NOT part of CYP450 enzymes
- Decreased activity:
 - Progestins
 - Metformin
 - Isoflavonoids (water soluble, plant pigments, legumes such as soy are the primary sources)
 - PCB toxicity
- Increased activity:
 - PCOS
 - High insulin
 - IL-4, IL-13 (associated with allergies)
 - Hyperthyroidism
 - Forskolin
Progesterone

- Primarily made in ovaries (less in the adrenals)
- Increased progesterone:
 - Pregnancy
 - Pregnenolone administration (increased metabolites in urine but not actually increased blood progesterone levels)
 - Chaste Tree Berry (Vitex)
- Decreased progesterone:
 - Birth control pills
 - Stress
 - Increased insulin
 - Opioids
 - Luteal phase defect/anovulation
 - High prolactin
 - Underweight
 - Hypothyroidism
 - Hormonal IUD (Mirena – releases low levels of progestins)
17α-HYDROXYLASE

<table>
<thead>
<tr>
<th>Enzyme/Reactivity</th>
<th>Description</th>
<th>Gene Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>17β-hydroxysteroid dehydrogenase</td>
<td>Aromatase</td>
<td>11β hydroxysteroid dehydrogenase 1 & 2</td>
</tr>
<tr>
<td>Cytochrome P450 scc</td>
<td>18-hydroxy dehydrogenase</td>
<td>17α-hydroxylase</td>
</tr>
<tr>
<td>18-hydroxylase</td>
<td>21-hydroxylase</td>
<td>11β-hydroxylase</td>
</tr>
<tr>
<td>17,20 lyase</td>
<td>3β-hydroxysteroid dehydrogenase, Isomerase</td>
<td>Catechol-O-Methyl-Transferase (COMT)</td>
</tr>
<tr>
<td>5α-reductase</td>
<td></td>
<td>Sulfatase (-SO4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfotransferase (+SO4)</td>
</tr>
</tbody>
</table>
17α-Hydroxylase

- Converts Pregnenolone to 17-OH Pregnenolone
- Converts Progesterone to 17-OH Progesterone
- Downregulated activity:
 - Spironolactone
 - Azole antifungals
 - Congenital adrenal hyperplasia

- Upregulated activity:
 - High insulin
 - PCOS
 - Hyperglycemia
 - Stress
 - Alcohol
21-HYDROXYLASE

11β-HYDROXYLASE

<table>
<thead>
<tr>
<th>17 β-hydroxysteroid dehydrogenase</th>
<th>Aromatase</th>
<th>11β hydroxysteroid dehydrogenase 1&2</th>
<th>Cytochrome 3A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome P450 scc</td>
<td>18-hydroxy dehydrogenase</td>
<td>17α-hydroxylase</td>
<td>Cytochrome 1A1</td>
</tr>
<tr>
<td>18-hydroxylase</td>
<td>21-hydroxylase</td>
<td>11 β - hydroxylase</td>
<td>Cytochrome 1B1</td>
</tr>
<tr>
<td>17,20 lyase</td>
<td>3 β-hydroxysteroid dehydrogenase, Isomerase</td>
<td>Catechol-O-Methyl-Transferase (COMT)</td>
<td>Sulfotransferase (+SO4)</td>
</tr>
<tr>
<td>5 α-reductase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cortisol Production
• Made in the adrenal glands
• Two enzyme reactions to convert from 17-OH-Progesterone
• Increased conversion to cortisol seen in:
 – Sodium depletion
 – High prolactin
 – Stress
 – Inflammation
 – Cushing’s
 – Obesity
• Decreased cortisol:
 – Glucocorticoid use
 – Addison’s Disease
 – Opioid use
 – Chronic marijuana use
 – Accutane
Cortisol (active stress hormone) vs Cortisone (inactive form)

- Via 11β hydroxysteroid dehydrogenase 1&2
- MORE CORTISOL
 - Stress, inflammation, Cushing’s disease, obesity, hypothyroidism, licorice, grapefruit, high insulin, excess sodium, hypoxia, vitamin D, forskolin
- MORE CORTISONE
 - Hyperthyroidism, estradiol, quality sleep, hGH (via IGF-1), good insulin sensitivity, reduced inflammation, Na restriction

Cortisone

Cortisol is metabolized by: 5α-Reductase and 5β-Reductase (and 3α-HSD) to a/b-THF & THE (cortisone metabolite) for excretion

- Increased in:
 - Obesity
 - High insulin
 - Hyperthyroid
- Decreased in:
 - Hypothyroidism
 - Anorexia
 - Poor liver function

11β – Hydroxysteroid Dehydrogenase 1 & 2
Aromatase is a key enzyme in the metabolism of steroid hormones. It catalyzes the conversion of androgens (male hormones) into estrogens (female hormones). This process is essential for the development and function of the female reproductive system. The diagram illustrates the pathways of steroid hormone metabolism, including the roles of various enzymes such as 17β-hydroxysteroid dehydrogenase, 11β-hydroxysteroid dehydrogenase, and cytochrome P450 enzymes. The table summarizes the enzymes involved in steroid hormone metabolism, highlighting the conversion of testosterone to estradiol, which is a critical step in the aromatization process.
Aromatase

- Conversion of adrenostenedione to estrone (E1)
- Conversion of testosterone to estradiol (E2)
 - Decreased aromatase activity:
 • Chrysin
 • Zinc
 • Flaxseed
 • Nettles
 • EGCG (green tea extract)
 • Anastrazole
 - Increased aromatase activity:
 • Inflammation
 • Excess adipose
 • High insulin
 • Alcohol
 • Mold/biotoxin illness (CIRS)
5α-Reductase

- Best known because it makes androgens (testosterone) more potent
- Also responsible for:
 - Metabolizing progesterone into a-Pregnanediol
 - Metabolizing cortisol into a-THF (b-metabolites of both through 5β activity)
- Upregulated leads to high androgen symptoms
 - Men (thinning hair, prostate issues)
 - Women (PCOS, thinning hair, acne, facial hair growth)
- Increased enzyme activity:
 - High insulin and obesity
- Decreased enzyme activity:
 - Saw palmetto, nettles, EGCG, progesterone, zinc, finasteride
Estrogen Metabolism

- **E1 (Estrone)** – main estrogen body makes post-menopausally. ↑ levels may ↑ breast ca
- **E2 (Estradiol)** – Over 400 functions in body, the most potent estrogen
- **E3 (Estriol)** – Least powerful but most beneficial
- Efficient metabolism results in predominance of 2-OH-E1 and 2-MeOE1
- Inefficient estrogen metabolism results in predominance of 16-OH-E1 and 4-OH-E1
 - Act negatively to allow oxidation
 - Damages DNA (4-OH-E1)
- **Cytochrome P450 enzymes involved in metabolism**
 - Healthy metabolism: Exercise, cruciferous veggies, pesticide free diet, weight loss, DIM/I3C, ↓ETOH, soy, high protein diet, flax, Omega-3 fats, antibiotics (enterohepatic recirculation of estrogens)
 - Unhealthy metabolism: Pesticides, smoking, caffeine (conversion to more 16OHE1), hypothyroidism
<table>
<thead>
<tr>
<th>17β-hydroxysteroid dehydrogenase</th>
<th>Aromatase</th>
<th>11β hydroxysteroid dehydrogenase 1&2</th>
<th>Cytochrome 3A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytochrome P450 scc</td>
<td>18-hydroxysteroid dehydrogenase</td>
<td>17α-hydroxylase</td>
<td>Cytochrome 1A1</td>
</tr>
<tr>
<td>18-hydroxylase</td>
<td>21-hydroxylase</td>
<td>11β - hydroxylase</td>
<td>Cytochrome 1B1</td>
</tr>
<tr>
<td>17,20 lyase</td>
<td>3 β-hydroxysteroid dehydrogenase, Isomerase</td>
<td>Catechol-O-Methyl-Transferase (COMT)</td>
<td>Sulfatase (-SO4)</td>
</tr>
<tr>
<td>5 α-reductase</td>
<td></td>
<td></td>
<td>Sulfotransferase (+SO4)</td>
</tr>
</tbody>
</table>
COMT – Catechol-O-Methyltransferase

- One of several enzymes that degrade catecholamines such as dopamine, epinephrine, and norepinephrine
- Principal enzyme in the conjugation pathway for hydroxylated estrogens
 - Carcinogenic 4-hydroxyestrogens
- Methylation of 2-OH/4-OH estrogens is slowed in:
 - Genetic variants (SNPs) in MTHFR and COMT
- COMT is upregulated by:
 - Methyl donors – SAMe, B vitamins, TMG, choline, folate, and methionine
Urine Steroidogenic Hormone – Interpretation At-A-Glance

ENZYMATIC STEPS:
- CYP1A1 = 17β-Hydroxysteroid dehydrogenase
- CYP19A1 = 17β-Hydroxysteroid dehydrogenase
- CYP17A1 = 17β-Hydroxysteroid dehydrogenase
- CYP11B1 = 11β-Hydroxysteroid dehydrogenase
- CYP21A2 = 21-Hydroxylase

ESTROGEN METABOLISM:
- 1A1 = CYP1A1
- 19A1 = CYP19A1
- 17β = CYP17A1
- 11β = CYP21A2
- 20α/26α = CYP20A1
- COMT = Catechol O-Methyltransferase
- MDM = Metabolite
- VD = Vascular Disturbance
- DHEA = Dehydroepiandrosterone
- DHEA-S = Dehydroepiandrosterone Sulfate
- T = Total
- Ttot = Total (T-tot) urine

KEY:
- C = Control
- V = Varied
- + = Increase
- - = Decrease
- ↔ = No change
- N/D = Not determined
- ND = Not detected
- SI = Sample Information
- O = Outside Reference Range
- I = Inside Reference Range
- N = Normal
- R = Reference
- U = Unknown
- Q = Questionable
- ± = Plus or minus

This sample pie chart reflects current scientific understanding of the association of specific estrogen metabolites with disease risk for hormone-related cancers. Metabolites in green have been associated in the literature with decreased risk; those in red, with increased risk; and those in yellow have mixed findings. Some studies showing an association and many finding no association. The duel line segments:
- Phase 1 and Phase 2: Differentiation pathways.
- Key:
Integrative Assessment

CASE STUDIES
34 year male physician – history of severe dizziness/vertigo, recently diagnosed with Lyme disease

- Complained of fatigue, decreased libido, difficulty sleeping (along with his other Lyme sx's), central weight gain
 - Wired but tired
 - Irritable
 - Impaired immunity

CASE PRESENTATION

Continued...
CASE PRESENTATION

- Blood test results:
 - Cholesterol 162 (reference range < 200)
 - Estradiol 9.5 (reference range 7.6 – 42.6, optimal lower 1/3 of reference range)
 - Estrone 58 (reference range 12 -72, optimal lower 1/3 of reference range)
 - Progesterone 0.5 (reference range 0.3 – 1.5)
 - FSH 4.0 (reference range 1.5 – 12.4)
 - LH 3.4 (reference range 1.7 – 8.6)
 - Prolactin 5.2 (reference range 4 – 15.2)
 - Testosterone 316 (reference range 348 – 1197, optimal upper 1/3 of reference range)
 - Free Testosterone 3.6 (reference range 8.7 – 25.1)
 - DHEA-S 65.2 (reference range 102.6 – 416.3, optimal upper ½ reference range)
 - SHBG 43.9 (reference range 16.5 – 55.9)
 - Pregnenolone 28 (reference range < 150, optimal 70-100)
 - AM Cortisol, serum 30 (reference range 7 – 28, optimal 10 – 15 in the morning)
 - MTHFR – heterozygous C677T
 - COMT – no SNPs

- Thyroid, lipids, other labs test (except inflammatory markers, Lyme Western Blot, etc) otherwise unremarkable
Salivary Hormone Results

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Normal Value</th>
<th>Reference Range</th>
<th>Test Value</th>
<th>Normal Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estradiol</td>
<td><25</td>
<td><25 - 50 pg/mL</td>
<td>25</td>
<td><25</td>
<td><25 - 50 pg/mL</td>
</tr>
<tr>
<td>Testosterone</td>
<td>140</td>
<td>125 - 200 pg/mL</td>
<td>140</td>
<td>140</td>
<td>125 - 200 pg/mL</td>
</tr>
<tr>
<td>Progesterone</td>
<td>8.8</td>
<td>5.0 - 15.0 pmol/L</td>
<td>8.8</td>
<td>8.8</td>
<td>5.0 - 15.0 pmol/L</td>
</tr>
<tr>
<td>Estriol</td>
<td><70</td>
<td><10 - 50 pg/mL</td>
<td>70</td>
<td><70</td>
<td><10 - 50 pg/mL</td>
</tr>
<tr>
<td>Serum Ratio</td>
<td>8.0</td>
<td>3 - 20</td>
<td>8.0</td>
<td>8.0</td>
<td>3 - 20</td>
</tr>
</tbody>
</table>

Salivary Cortisol and DHEA

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Normal Value</th>
<th>Reference Range</th>
<th>Test Value</th>
<th>Normal Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortisol</td>
<td>1.40</td>
<td>0.27 - 1.10 mcg/dL</td>
<td>1.40</td>
<td>1.40</td>
<td>0.27 - 1.10 mcg/dL</td>
</tr>
<tr>
<td>DHEA</td>
<td>1.40</td>
<td>0.06 - 0.27 mcg/dL</td>
<td>1.40</td>
<td>1.40</td>
<td>0.06 - 0.27 mcg/dL</td>
</tr>
</tbody>
</table>

Salivary Melatonin

<table>
<thead>
<tr>
<th>Hormone</th>
<th>Normal Value</th>
<th>Reference Range</th>
<th>Test Value</th>
<th>Normal Value</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melatonin</td>
<td>50.00</td>
<td>0.50 - 10.0 pg/mL</td>
<td>50.00</td>
<td>50.00</td>
<td>0.50 - 10.0 pg/mL</td>
</tr>
</tbody>
</table>
Recommendations

• Stress reduction
 – Emotional/Mental – breathing exercises, prayer, meditation, yoga, etc
 – Infection – antimicrobials/antifungals
 – Inflammation – dietary (low sugar/high protein) and anti-inflammatory (omega-3 fatty acids, curcumin, etc)

• Hormone support
 – Pregnenolone 100 mg
 – DHEA 25 mg
 – HCG 500 IU SQ twice weekly x 8 weeks (ultimately 20 mg testosterone/15 mg Chrysin)
 – Aromatase
 • Green tea, zinc, flaxseed
 – Adaptogenic herbs – Panax Ginseng, Rhodiola, Ashwaganda
 – Methylation support - Methylated folic acid, Methyl-B12, TMG, B2, B6
24 Year-Old Female

• With:
 – Irregular periods
 – Facial hair
 – Obesity
 – High carb diet

• Diagnosis:
 – PCOS

• Treatment:
 – Stress reduction
 • Diet – ↓carb↑prot
 • Mental/emotional
 • Inflammatory
 • Infectious
 • Oxidative
 – Other Recommendations
 • Metformin
 • Adaptogens
 • Spironolactone (maybe)
 • Zinc
28 Year-Old Male w/IBD

- With:
 - Significant diarrhea
 - Weight loss
 - BRAT diet/low fat

- Lab Findings:
 - Cholesterol 118

Recommendations:
- Treat the gut
 - Probiotics
 - Glutamine
 - Omega-3 fats
 - Anti-inflammatory diet
 - Adequate fat intake
 - Licorice root
 - Pregnenolone
 - DHEA
Questions?

Moderator:
Christine Stubbe, ND

Presenter:
Ellen Antoine, DO, FACEP, ABIHM, IFMCP

Explore
WWW.GDX.NET
for more information and educational resources, including...

LEARN GDX — Brief video modules
LIVE GDX — Previous webinar recordings
GI University — Focused learning modules
Conferences — Schedule of events we attend
Test Menu — Detailed test profile information
MY GDX — Order materials and get results

Genova Diagnostics
Additional Education Materials:
WWW.GDX.NET

Sample Reports, Support Guides, Kit Instructions, FAQs, Payment Options, and much more!
Additional Questions?

US Client Services: 800-522-4762
UK Client Services: 020.8336.7750

Please schedule a complimentary appointment with one of our Medical Education Specialists for questions related to:

– Diagnostic profiles featured in this webinar
– How Genova’s profiles might support patients in your clinical practice
– Review a profile that has already been completed on one of your patients

We look forward to hearing from you!
Upcoming **LIVE** GDX Webinar Topics

July 2016

— *The Stress Response —

Women’s Health and The Role of Adaptogens

• Aviva Romm, MD

Register for upcoming **LIVE** GDX Webinars online at WWW.GDX.NET

The views and opinions expressed herein are solely those of the presenter and do not necessarily represent those of Genova Diagnostics. Thus, Genova Diagnostics does not accept liability for consequences of any actions taken on the basis of the information provided.
The Steroidogenic Pathway: Understanding What Influences Each Step

Ellen Antoine, DO, FACEP, ABIHM, IFMCP

The views and opinions expressed herein are solely those of the presenter and do not necessarily represent those of Genova Diagnostics. Thus, Genova Diagnostics does not accept liability for consequences of any actions taken on the basis of the information provided.